



# **IPR Notice**

All rights, titles and interests contained in this information, texts, images, figures, tables or other files herein, including, but not limited to, its ownership and the intellectual property rights, are reserved to eMemory. This information may contain privileged and confidential information. Some contents in this information can be found in Logic Non-Volatile Memory (The NVM solutions from eMemory), published in 2014. Any and all information provided herein shall not be disclosed, copied, distributed, reproduced or used in whole or in part without prior written permission of eMemory Technology Inc.

eMemory, NeoBit, NeoFuse, NeoEE, NeoMTP, NeoROM, EcoBit and NeoPUF are all trademarks and/or service marks of eMemory in Taiwan and/or in other countries.



# **Cautionary Statement**

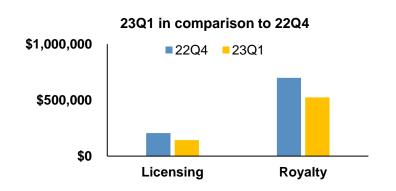
This presentation contains forward-looking statements, which are subject to risk factors associated with semiconductor and intellectual property business. It is believed that the expectations reflected in these statements are reasonable. But they may be affected by a variety of variables, many of which are beyond our control. These variables could cause actual results or trends to differ materially which include, but are not limited to: wafer price fluctuation, actual demand, rapid technology change, delays or failures of customers' tape-outs into wafer production, our ability to negotiate, monitor and enforce agreements for the determination and payment of royalties, any bug or fault in our technology which leads to significant damage to our technology and reputation, actual or potential litigation, semiconductor industry cycle and general economic conditions. Except as required by law, eMemory undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, future events, or otherwise.

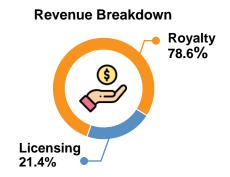


# **Contents**

- 1 Review of Operations
- 2 Future Outlook
- How PUF-based Solutions Secure ChatGPT and AI
- 4 Q&A
- 5 Appendix




### **Q1 2023 Financial Results**


(thousands of NT dollars)

|                    | Q1 2023 | Q4 2022 | QoQ        | Q1 2022 | YoY        |
|--------------------|---------|---------|------------|---------|------------|
| Revenue            | 667,751 | 902,704 | -26.0%     | 727,107 | -8.2%      |
| Gross Margin       | 100%    | 100%    | -          | 100%    | -          |
| Operating Expenses | 300,657 | 368,090 | -18.3%     | 313,846 | -4.2%      |
| Operating Income   | 367,094 | 534,614 | -31.3%     | 413,261 | -11.2%     |
| Operating Margin   | 55.0%   | 59.2%   | -4.2 ppts  | 56.8%   | -1.8 ppts  |
| *Net Income        | 313,090 | 430,536 | -27.3%     | 366,019 | -14.5%     |
| Net Margin         | 46.1%   | 47.6%   | -1.5 ppts  | 49.8%   | -3.7 ppts  |
| EPS (NT\$)         | 4.20    | 5.77    | -27.2%     | 4.91    | -14.5%     |
| ROE                | 38.9%   | 62.2%   | -23.3 ppts | 55.0%   | -16.1 ppts |

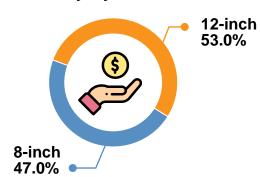
<sup>\*</sup>Net income attributable to Shareholders of the Company

### Revenue across Different Streams





#### Revenue


| NT\$ Thousands | Q1 2023 | Q4 2022 | Change (QoQ) | Q1 2022 | Change (YoY) |
|----------------|---------|---------|--------------|---------|--------------|
| Licensing      | 143,049 | 205,104 | -30.3%       | 191,608 | -25.3%       |
| Royalty        | 524,702 | 697,600 | -24.8%       | 535,499 | -2.0%        |
| Total          | 667,751 | 902,704 | -26.0%       | 727,107 | -8.2%        |

# Revenue by **Technology**

|            |                    | Q1 2023         |                 |                      |                   |                 |                    |                 |                 |  |
|------------|--------------------|-----------------|-----------------|----------------------|-------------------|-----------------|--------------------|-----------------|-----------------|--|
|            | Total Revenue      |                 |                 | Lice                 | Licensing Revenue |                 |                    | Royalty Revenue |                 |  |
| Technology | % of Q1<br>Revenue | Change<br>(QoQ) | Change<br>(YoY) | % of Q1<br>Licensing | Change<br>(QoQ)   | Change<br>(YoY) | % of Q1<br>Royalty | Change<br>(QoQ) | Change<br>(YoY) |  |
| NeoBit     | 28.2%              | -30.0%          | -22.7%          | 19.7%                | -22.6%            | -19.8%          | 30.5%              | -31.1%          | -23.2%          |  |
| NeoFuse    | 63.9%              | -22.4%          | -0.8%           | 49.6%                | -28.5%            | -42.9%          | 67.8%              | -21.0%          | 16.3%           |  |
| PUF-Based  | 2.5%               | -63.6%          | 126.6%          | 11.5%                | -60.7%            | 138.2%          | 0.0%               | -93.8%          | -46.3%          |  |
| МТР        | 5.4%               | -5.6%           | -21.7%          | 19.2%                | 0.0%              | 8.4%            | 1.7%               | -19.8%          | -58.2%          |  |

# Royalty Revenue by Wafer Size

#### **Q1 Royalty Breakdown**



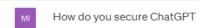
- 8-inch wafers contributed 47% of royalty, down 25.5% sequentially and down 9.2% yearly.
- 12-inch wafers contributed 53% of royalty, down 24.1% QoQ but up 5.3% YoY.

| Mafar Cina |         | Q1 2023      |              |
|------------|---------|--------------|--------------|
| Wafer Size | % of Q1 | Change (QoQ) | Change (YoY) |
| 8-Inch     | 47.0%   | -25.5%       | -9.2%        |
| 12-Inch    | 53.0%   | -24.1%       | 5.3%         |



### **Future** Outlook

#### **Licensing & Royalty:**


- Licensing will significantly grow during the rest of the year, driven by PUFbased security solutions.
- With more than 1000 new products tape out in the pipeline, royalty will regain growth momentum as new tape outs move into production.

#### **New IP Technology & Business Development:**

- This year, PUF-based solutions will be adopted in 5/6/7nm CPU, DPU, AI and Automotive-related applications.
- Continue working with foundries to develop NeoFlash to increase the penetration rate of mature processes.
- Continue developing PUF-based security solutions in the most advanced processes with CPU partners.



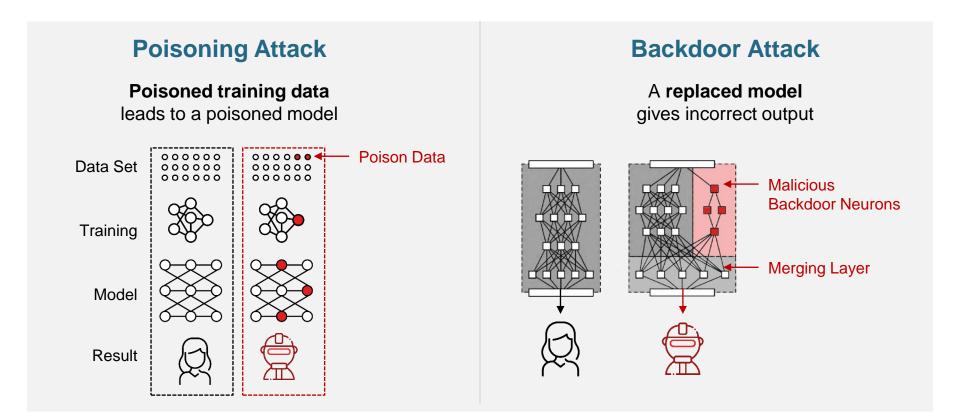
## Asking ChatGPT about Security.







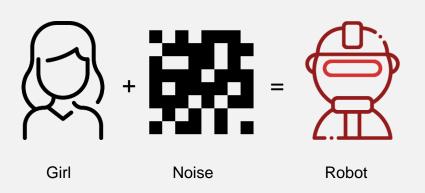
As an Al language model, ChatGPT is secured through various measures that are designed to ensure the confidentiality, integrity, and availability of the system. Here are some of the ways ChatGPT is secured:





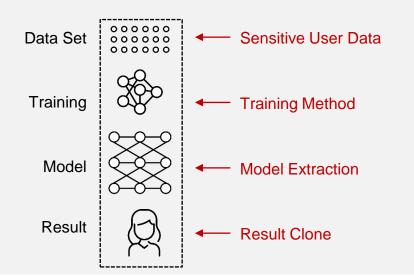

- 1. Data Encryption: All the data exchanged between the user and ChatGPT is encrypted using industry-standard encryption protocols. This helps to protect the data from unauthorized access or interception.
- 2. Access Control: Access to ChatGPT is restricted to authorized personnel only. Authentication mechanisms such as username and password are used to ensure that only authorized users can access the system.
- 3. Auditing and Logging: ChatGPT logs all user activities and interactions, including user inputs and system outputs. This helps to identify and investigate any security incidents or breaches.
- Regular Updates: ChatGPT is regularly updated with the latest security patches and fixes. This helps to mitigate any known security vulnerabilities and keep the system secure.
- 5. Training and Awareness: All personnel involved in the operation and maintenance of ChatGPT undergo regular security awareness training to help them identify and mitigate potential security threats.

|   | Use PUF-based Security                                                             |  |  |  |  |  |
|---|------------------------------------------------------------------------------------|--|--|--|--|--|
| 1 | Key generation for encryption                                                      |  |  |  |  |  |
| 2 | Unique Identity (UID) and Secret<br>Key generation for authentication              |  |  |  |  |  |
| 3 | ID generation for users                                                            |  |  |  |  |  |
| 4 | Secure over-the-air (OTA) firmware/software updates through signature verification |  |  |  |  |  |
| 5 | Mitigate human errors by hardware security                                         |  |  |  |  |  |


### Major Attacks in Al -



### Major Attacks in Al cont.


#### **Evasion Attack**

Al model mis-performs due to **modified Input Data or Inference Results** 



#### **Stealing Attack**

Hacker **steals Al know-how** including data, model parameters, or sensitive information



### How to **Prevent Attacks** on **AI**.

- Each of these types of attacks requires different protection methods
- PUF-based security co-processor, PUFcc, can well protect AI systems

| Types | s of Attacks     | Problems                                                     | Solution                                                                  |  |
|-------|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|--|
|       | Poisoning Attack | Training data may be corrupted                               | Signing the training data                                                 |  |
|       | Backdoor Attack  | Model may be modified, replaced, or even stolen by attackers | <ul><li>Signing the model</li><li>Encryption and Key management</li></ul> |  |

### How to **Prevent Attacks** on **AI** cont.

- Each of these types of attacks requires different protection methods
- PUF-based security co-processor, PUFcc, can well protect AI systems

| Types of Attacks |                 | Problems                                                                                                           | Security Solution                                                                                                                                              |  |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                  | Evasion Attack  | Attacker can tamper input data to wreck the model, or tamper with the inference result                             | <ul> <li>Authenticate and provision users (UID)</li> <li>Encryption and Key management</li> </ul>                                                              |  |
|                  | Stealing Attack | Hardware implementations of AI are prone to hacking and theft, including training data, model and inference result | <ul> <li>Authenticate provision users (UID)</li> <li>Signing model/data</li> <li>Encryption and Key management</li> <li>Anti-tamper hardware design</li> </ul> |  |

### **Securing AI** with **PUF-based** Solutions -

PUF-based IPs provide comprehensive protection to safeguard AI applications

#### Best in-class Root of Trust



- Secure OTP Qualified Worldwide
- High performance TRNG
- High quality on-chip PUF fingerprint
- Controller and flexible interfacing

#### Complete set of Cryptographic Engines



- Symmetric ciphers (AES)
- Public Key cryptography (RSA/ECC)
- Secure hashing (SHA-2)
- Key wrapping and derivation

#### Certified Anti-tampering Designs



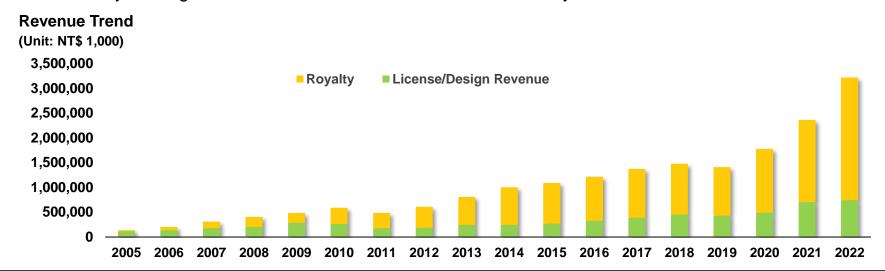
- Data/address scrambling
- Output data fault detection
- Side-channel attack countermeasures

#### Advanced Security Protocols and Applications



- Secure boot
- Transport Layer Security (TLS)
  Protocol
- Key management
- Anti-cloning and asset protection






Q&A



# **Company Overview**

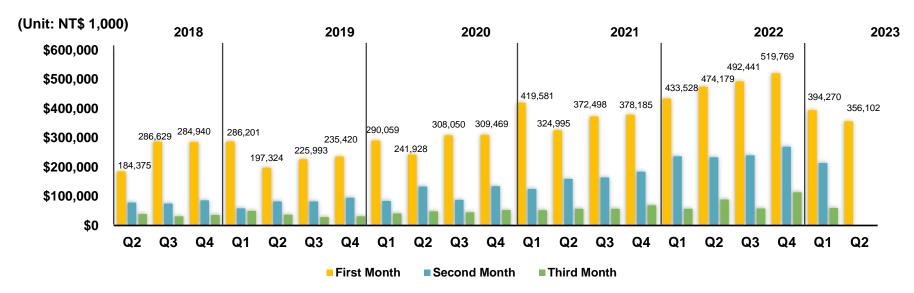
eMemory is the global leader of embedded non-volatile memory IP



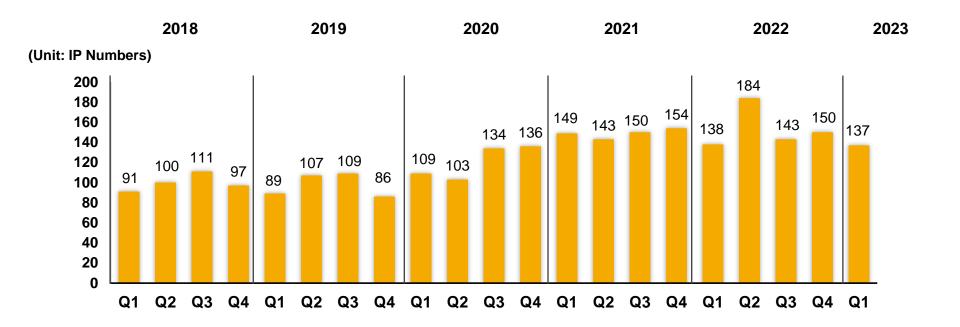
### Founded In 2000

Based in Hsinchu, Taiwan. IPO in 2011. Over 50M wafers shipped.

Patents Issued


199 pending patents. 334 employees with 67% R&D personnel.

### t IP Partner With TSMC


TSMC Best IP Partner Award since 2010.

# Quarterly Revenue Pattern

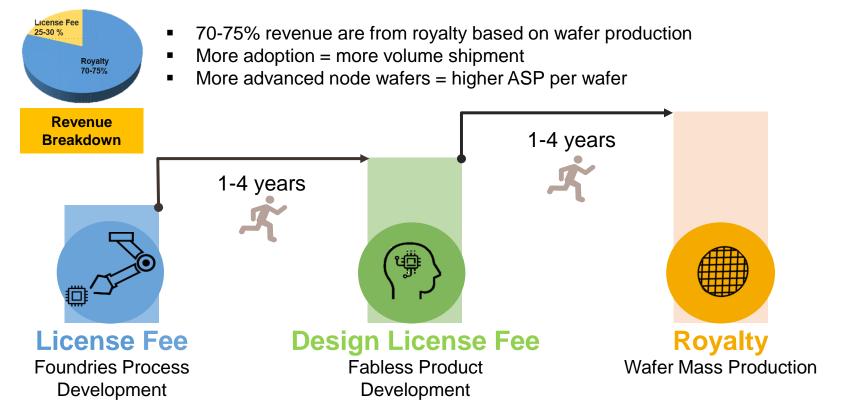
- 1st month: Receive License Fees of the month and Royalty from most foundries on previous quarter's wafer shipments.
- 2<sup>nd</sup> month: Receive License Fees of the month and Royalty from other foundries.
- 3<sup>rd</sup> month: License Fees Only.



# Quarterly Number of New Tape-outs



### **Worldwide Customers**

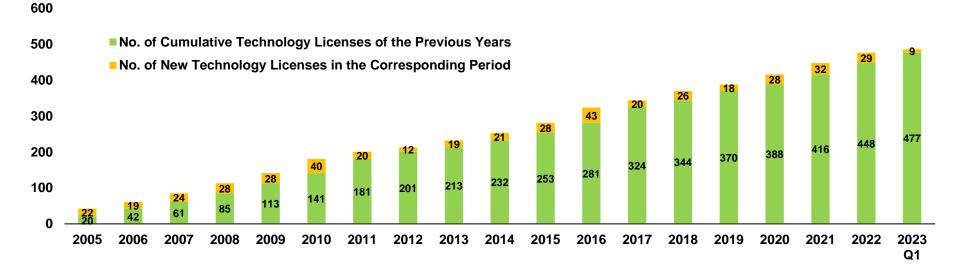

Our IP solutions are adopted by leading foundries, IDMs and fabless worldwide

| Country          | Foundry | IDM | Fabless |
|------------------|---------|-----|---------|
| Taiwan           | 4       | 1   | 323     |
| China            | 9       | 0   | 1105    |
| Korea            | 4       | 0   | 96      |
| Japan            | 4       | 7   | 80      |
| North<br>America | 1       | 1   | 365     |
| Europe           | 2       | 1   | 211     |
| Others           | 1       | 0   | 103     |



### **Business Model**

Recurring royalty is the backbone of our business




# Technology Licenses

#### **Number of Licenses**

| Year    | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 Q1 |
|---------|------|------|------|------|------|------|------|---------|
| License | 43   | 20   | 26   | 18   | 28   | 32   | 29   | 9       |

Note: Terms (including number of process platforms and licensing fees) for each technology license are set contractually. Payments are made according to set milestones, and there are no particular seasonal factors involved.



# New Technology Under Development

- New technologies are being developed for 140 platforms by Q1 2023.
- 9 licensing contracts were signed.

| Technology | 3nm | 4/5nm | 6/7nm | 12/16nm | 22/28nm | 40nm | 55/65nm | 80/90nm | 0.11~<br>0.13um | 0.15~<br>0.18um | >0.25um |
|------------|-----|-------|-------|---------|---------|------|---------|---------|-----------------|-----------------|---------|
| NeoBit     |     | -     | -     | -       | -       | -    | 2       | 1       | 14              | 11              | 1       |
| NeoFuse    | 2   | 2     | 1     | 7       | 11      | 6    | 17      | 7       | 2               | 3               | -       |
| PUF-Based  | -   | 2     | -     | -       | 1       | -    | 1       | -       | -               | -               | -       |
| МТР        | -   | -     | -     | -       | 2       | 1    | 8       | 7       | 13              | 18              | -       |

Note: As of March 31st, 2023

# **Technology Development**

Developments by process nodes

| 12" Fabs    | Production | Development | IP Type       | Process Type                                                        |
|-------------|------------|-------------|---------------|---------------------------------------------------------------------|
| 3nm         | 0          | 2           | OTP           | FF                                                                  |
| 4/5nm       | 2          | 4           | OTP, PUF      | FF                                                                  |
| 6/7nm       | 4          | 1           | OTP, PUF      | FF, FF+                                                             |
| 12/16nm     | 8          | 7           | OTP, PUF      | FF, FF+, FFC. FFC+, LPP, DRAM                                       |
| 22/28nm     | 44         | 14          | OTP, PUF ,MTP | LP/ULP/ULL, HPC/HPC+, HV-OLED, DRAM, SOI, ReRAM, MRAM, E-Flash, BCD |
| 40nm        | 22         | 7           | OTP, PUF, MTP | LP/ULP, E-Flash, HV-DDI/OLED, ReRAM                                 |
| 55/65nm     | 38         | 28          | OTP, PUF, MTP | LP/ULP, E-Flash, HV-DDI/OLED, DRAM, CIS, BCD, PM                    |
| 80/90nm     | 23         | 12          | OTP, MTP      | HV-DDI/OLED, LP, Generic ,BCD, CIS                                  |
| 0.11/0.13um | 20         | 3           | OTP, MTP      | HV-DDI, BCD, Generic                                                |
| 0.15/0.18um | 2          | 11          | OTP, MTP      | BCD, Generic                                                        |
| Total       | 163        | 89          |               |                                                                     |

| 8" Fabs           | Production | Development | IP Type       | Process Type                                          |
|-------------------|------------|-------------|---------------|-------------------------------------------------------|
| 80/90nm           | 9          | 3           | ОТР           | HV-DDI, LL, BCD                                       |
| 0.11/0.13um       | 76         | 26          | OTP, MTP, PUF | HV/HV-MR, BCD, LP/LL, CIS, Green, Flash, SOI, Generic |
| 0.152/0.16/0.18um | 225        | 21          | OTP, MTP      | HV/HV-MR, BCD, LP/LL, CIS, Green, Generic             |
| 0.25um            | 42         | 1           | ОТР           | BCD                                                   |
| 0.3/0.35um        | 53         | 0           | OTP, MTP      | UHV, BCD                                              |
| 0.4/0.5um         | 11         | 0           | ОТР           | UHV, BCD                                              |
| Total             | 416        | 51          |               |                                                       |

Note: As of March 31st, 2023

